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Abstract: For a humanitarian landmine detection system to be of practical value it has to
meet the following criteria: detection must be performed in real-time from a moving platform;
plastic mines must be reliably detected; and the false alarm rate should be kept to a minimum.
Ground penetrating radar is a promising technology for the detection of landmines with
low metal content. The improved algorithms presented in this paper can meet the above
mentioned criteria to a large extent. Clutter removal is performed by an adaptive filter
which removes virtually all background clutter in real time and can adapt to changing soil
characteristics. Classification is performed by a new rule-based classifier capable of detecting
both metal and plastic anti-tank mines. Despite the fact that the algorithms are currently

implemented in Matlabr, mine detection can be performed on a vehicle moving at 9 km/h.
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1. INTRODUCTION

Each year undetected landmines destroy many
innocent lives. Although most nations agree that
landmine removal is an important humanitarian
problem, the reliable and efficient detection of
buried landmines remains a challenging problem.
Ground penetrating radar is a sensing technology
that has delivered promising results in the detection
of landmines with a low metallic content.

Traditionally, pattern recognition systems consist
of three successive steps namely: preprocessing,
feature extraction and final identification. Some
researchers dispense with the first two steps and
attempt to solve the pattern recognition problem
in a single identification stage operating on the
raw measured data. Inevitably, the lack of a
concise set of features exposes the pattern recognizer
(e.g. a neural network) with a sparsely populated,
high-dimensional input space resulting in mediocre
performance at best. Without a preprocessing step
the data is often too noisy and/or dominated by
unimportant phenomena to allow the extraction of
usable features with high discriminatory abilities.
Our practical experience tells us that a chain is only
as strong as its weakest link. This advice also rings
true in pattern recognition problems. Consequently
all of the stages in a pattern recognition system have
to be performed as optimally as possible.

In landmine detection via GPR the preprocessing
step is primarily occupied with the removal of
as much clutter as possible to facillitate successful
landmine detection. To a large extent the GPR
demining literature hasn’t shown any significant new
developments on the topic of clutter removal during
the past few years. Although the clutter removal

algorithms used at present are all quite good, they
are far from perfect.

Section 2 of this paper presents an improved adaptive
clutter removal algorithm which can be applied in
real time. Clutter removal is typically followed by
feature extraction and classification. In this paper,
both of these steps are condensed into one. The
classification approach presented in this paper is
presented in section 3. The performance of both
the clutter removal algorithm and the mine detection
algorithm are separately evaluated in section 4, while
final recommendations for future work are given in
section 5.

This paper is the second paper in a two-part series
on novel techniques that have been developed for
the detection of landmines by means of ground
penetrating radar (GPR). More details on the specific
GPR array that has been used in this research
can be found in the companion paper (Landmine
detection by means of ground penetrating radar: a
model-based approach). In the previous paper clutter
removal was performed on the original frequency
domain data delivered by the stepped-frequency
continuous-wave GPR antenna array. The clutter
removal procedure described in the previous paper
however isn’t amenable to an elegant real-time
implementation. In the current paper the focus
is on accurate landmine detection in real-time. A
time-domain approach is followed throughout this
paper.

2. CLUTTER REMOVAL

To be of practical worth, clutter removal procedures
have to exhibit the following properties.



Vol.105 (4) December 2014SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS176

1. Real-time processing. In practice, mine clearance
operations entail that large areas of land be
processed. Time is therefore of the essence,
which implies that landmine detection must
be performed from a moving platform. It
is therefore imperative that clutter removal be
performed in real-time.

2. Adaptive behaviour. It is important that any
clutter removal technique can adapt to changing
soil conditions [1]. This calls for an adaptive
model of the background clutter; one that
can easily adapt to gradual variations in soil
properties, but is too slow to track the abrupt
changes caused by mine reflections.

3. Reduced correlation between A-scans of empty
soil (i.e. without any mines), but improved
correlation between A-scans containing mine
responses.

As mentioned in the previous paper, the basic
idea behind a number of existing clutter removal
procedures is to construct an adaptive model of
the background present in each A-scan and then to
subtract this model from the observed data. This
process then emphasizes all rapid variations from
the background clutter. Fundamentally, this process
amounts to adaptive high-pass filtering.

Probably one of the simplest, yet effective solutions
to this problem is to model the background clutter
in the current A-scan as the weighted average of
the previous N A-scans produced by the same
antenna-element (i.e. the previous N A-scans in the
down-track direction). Mathematically, this can be
expressed as follows:

x̂ij =
i−1

∑
k=i−N

(

αkxkj

)

, (1)

where x̂ij is the estimated A-scan at position (i, j),

αk is the weight reflecting the contribution of the kth

previous A-scan and xkj is the measured A-scan at

position (k, j). All A-scans are represented by Nz × 1
vectors, where Nz refers to the number of samples in
the vertical (depth) direction.

In terms of vector notation, the above model can be
written as follows:

x̂ij = XΘ, (2)

where X is a Nz × N matrix of the previous A-scans
and Θ is the N × 1 vector of coefficients αk.

If the coefficients of this weighted average are
re-calculated for every new cross-track B-scan, the
model can adapt to changing conditions. The number
of previous A-scans (N) determines the ability of

the model to adapt to changing conditions: the
larger N becomes, the more inertia the model shows
against change. Optimal weights can be obtained by
minimizing the difference between the background
model and the current A-scan.

A least-squares solution for the coefficient vector
can be found by means of the Moore-Penrose
pseudo-inverse [2] as follows:

Θ = X+xij, (3)

where X+ = (XTX)−1XT .

Finally, the decluttered version of any A-scan
(

x̃ij

)

can then be obtained by subtracting the model of
the background clutter

(

x̂ij

)

in the A-scan from the

A-scan
(

xij

)

as follows:

x̃ij = xij − x̂ij (4)

The above mentioned clutter removal procedure is
undeniably very simple. It is however very effective
as the results presented in section 4.1 show. The next
step in mine detection entails feature extraction and
classification. In this paper both of these steps are
combined in a single rule-based detection algorithm.

3. RULE-BASED MINE DETECTION

Two of the tell-tale signs of the presence of a mine in
GPR data are the so-called hyperbolas and concentric
circles. As figure 1 shows, these patterns can
be visible even in raw GPR data (in the case of
metal anti-tank mines). It is no small wonder that
hyperbolas and circular patterns are used by human
operators to detect mines.

Hyperbolas are in fact produced in GPR data by
any distinct subsurface object due to the imperfect
directivity of the radar antennae [3]. More
specifically, radar signals are transmitted in relatively
wide angle beams which allow the detection of
objects some distance from the central axis of the
beam. As a GPR antenna array moves along the
surface, the accumulated reflections of these objects
result in hyperbolic reflection patterns visible in
vertical B-scans [4]. Concentric circles are visible
in horizontal B-scans. These circular patterns are
caused by the same mechanism as hyperbolas, but
are limited to circular objects. (Buried pipes can be
seen by hyperbolic patterns in vertical B-scans, but
form linear patterns in horizontal B-scans.)

Other researchers have capitalized on the distinctive
shapes of hyperbolic and circular reflections to
design mine detection systems. One innovative
approach was to perform clutter removal by
means of a digital two-dimensional high-pass filter
whose pass-band was determined by the frequency
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(a) Concentric circles in a horizontal B-scan (b) Hyperbolas in a vertical B-scan

Figure 1: Circles and hyperbolas present in raw GPR data

response of hyperbolic patterns [5]. Their approach
did improve the signal to clutter ratio of the data
without significantly reducing the quality of mine
reflections. However, as mentioned previously,
hyperbolic patterns aren’t unique to mines - in fact,
pebbles also frequently cause such patterns.

Similarly, the idea to use only circular patterns in
GPR data as an indicator of the presence of mines
isn’t a new one. Some authors followed an image
processing approach in which each horizontal B-scan
is regarded as an image [6] and [7]. Features are then
extracted from each image to measure the properties
(such as the eccentricity and compactness) of any
circular objects in the image. The resultant features
are then used by either rule-based classifiers [6] or
neural networks [7] to come to a final decision on
the identity of the buried object. Classifiers based
on features that measure some aspect of the circular
patterns have obtained some success on practical
GPR data [7]. Unfortunately the computational cost
incurred by the required feature extraction process is
quite high, since the circular nature of the patterns
are inferred indirectly from e.g. eigenvalue ratios
obtained from moment matrices extracted from the
B-scan image.

An alternative approach is to use the (circular)
Hough transform to directly detect circular patterns
in horizontal B-scans [8]. A major drawback of the
Hough transform however is that it isn’t accurate
for small circles. (Even though the GPR antenna
array used in this paper has an effective scan width
of 1.575 m, the resultant image only has 21 pixels
in the cross-track direction, which corresponds to
a very small image.). Furthermore, the Hough
transform is a computationally intensive procedure
which precludes any real-time applications.

It is clear that a mine detection approach based on
circular patterns shows promise if the computational
cost can be decreased without a commensurate loss
in detection accuracy.

3.1 Algorithm overview

Observation of horizontal B-scans show that mine
responses exhibit the following characteristics:

• Circles consisting of a mixture of light and dark
patterns.

• The radius of the outer ring increases as the
observation depth is increased. The intensity of
the outer ring however also quickly diminishes.

• The size of the rings correspond to the reflective
properties of the mine. Metal mines are more
reflective and are therefore also more visible.

• Sequences of concentric circles sometimes be-
come visible. These are due to resonant
scattering of the radar waves induced by the top
and bottom edges of the mine [9].

The success of a rule-based mine detection algorithm
depends heavily on the quality of features that are
extracted or images that are used within the rule
antecedents. If the presence of circular patterns in a
horizontal B-scan are to be used to detect the presence
of mines, it is therefore important to enhance the
image sufficiently that the eventual classification
becomes a mere formality. The entire classification
algorithm will now be reviewed. Details of some of
the intermediate steps in this algorithm are discussed
in sections 3.2 to 3.5.

1. Extract a segment from the GPR C-scan. In the
present version of the algorithm a “segment”
is defined as a rectangular cylinder whose two
horizontal dimensions are equal to the number
of antennas in the cross-track direction. The
height (depth) of the cylinder is determined by
the desired maximum depth of the GPR scan.
For the GPR data at our disposal, the segment
encompasses a 21 × 21 × 160 three-dimensional
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matrix of data. The motivation for the large
size of this segment is twofold. First is the
relative rare occurence of landmines within any
particular C-scan. Second is the relatively large
size of the circular patterns within a horizontal
B-scan. (In practical data the concentric rings
associated with a metal anti-tank (AT) mine have
a radius of anything between three and eight
pixels, where each “pixel” refers to the reflection
amplitude detected by a specific antenna within
the entire GPR antenna array. In physical
terms, these circular patterns therefore have
radii stretching between 22.5 cm and 60 cm, for
a cross-track channel spacing of 7.5 cm [10].)

2. For each depth index within the extracted seg-
ment, the following steps are then performed.

(a) Emphasize both the darker and lighter
pixels in each horizontal B-scan image.
What is interpreted by the human visual
system as a circular ring often actually
consists of semi-circular arcs of quite
different grayscale values, as can be seen
in figure 2. This figure shows the response
of a low metal content anti-tank (AT) mine
after clutter removal has been performed.
The image is shown purposefully small so
that the circular patterns are more clearly
visible. To facillitate automatic detection
of circular patterns both lighter and darker
grayscale values in the image have to be
emphasized above the general background.
The result of this nonlinear amplitude filter
is shown in figure 4. A detailed discussion
on this filter can be found in section 3.2.

(b) Convert the filtered grayscale image into
a binary image consisting of background
pixels (black) and pixels in the vicinity of
a semi-circular arc (white). An example of
the thresholding process is given in figure
5. More details on this step can be found in
section 3.3.

(c) Fit a circle to the pixels identified by the
thresholding process. The fitted circle
can then be regarded as a model for the
observed circular pattern.

(d) Determine the validity of the aforemen-
tioned model (namely the fitted circle). This
can be accomplished by calculating the
accuracy of the fitted model with respect
to the observed data. For more detail on
the procedure to fit a circle to the data, as
well as to validate the fitted circle, consult
section 3.4.

(e) If the fitted circle passes the test, its
parameters (namely its centre position and
radius) are used in a rule-based classifier
to determine whether a mine is actually
present or not.

3. Increment the down-track dimension index by
a preset interval (e.g. half of the width of
the extracted segment) and repeat the entire
procedure from step 1.

Figure 2: Circular patterns caused by a plastic anti-tank
mine

In the following paragraphs some detail aspects of
the algorithm outlined in section 3.1 are presented.

3.2 Contrast enhancement

In image processing the subjective quality of an
image can be improved by means of contrast
enhancement [11]. Various techniques exist to
perform contrast enhancement ranging from heuris-
tic piecewise linear mappings of pixel grayscale
values to histogram equalization. The disadvantage
of piecewise linear mappings is that the resultant
mapping from input to output pixel intensities is
non-smooth, which might result in unexpected edges
being artificially introduced in the image. Histogram
equalization on the other hand strives to obtain
a more uniform distribution of grayscale values
throughout the image. This powerful and elegant
technique does however tend to amplify noise in the
image.

A useful alternative to piecewise linear contrast
enhancement is the logistic function. Also known as
the sigmoid function in the neural network literature,
the logistic function represents a smooth nonlinear
mapping between an arbitrary input space and the
unit interval. As can be seen in figure 3 the logistic
function can be easily modified to accomplish any
desired mapping between the input and output
space. Mathematically, this function can be expressed
as follows:

y =
1

1 + e−a(x−b)
, (5)

where x represents the original grayscale value of
a pixel, y is the transformed grayscale value and a
and b are two parameters that control the particular
nature of the mapping. The crossover point of the
logistic function (defined as the input value for which
the function value is equal to 0.5.) is determined by
b, while a controls the gradient of the function at its
crossover point.

As is evident in figure 2 circular patterns often
consist of a combination of light and dark pixels
arranged in semi-circular arcs. The objective of
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Figure 3: The logistic function

image improvement in this context therefore entails
enhancing the contrast of both light and dark pixels
in comparison with the general background. This
can be accomplished by the sum of two separate
logistic functions, one responsible for enhancing dark
pixels (y1) and another responsible for enhancing
light pixels (y2). The resultant amplitude filter is
summarised in (6).

y = y1 + y2

=
1

1 + eb(x−a)
+

1

1 + e−c(x−d)
(6)

It is clear from (6) that the performance of the
resultant filter is determined by the values of its
four parameters: a, b, c and d. Optimal values for
these parameters were obtained through a process of
trial and error. In this context, “optimal” parameters
are defined as those parameter values that result in
the isolation of only those pixels that form part of
a circular arc. The final filter function (obtained
through a process of visual evaluation of the results
obtained by various sets of filter coefficients) is given
by

y =
1

1 + e50(x−0.5)
+

1

1 + e−50(x−0.6)
. (7)

Example results of the contrast enhancement process
are given in figure 4. The input image for the
nonlinear amplitude filter is a decluttered horizontal
B-scan. Figure 4(a) shows a B-scan of a metal AT
mine. The dark and light arcs that comprise the
circular patterns are clearly visible in this image.
After the nonlinear amplitude filter of (7) is applied
to the image in figure 4(a) only a subset those pixels
that form part of the circular pattern are isolated, as
can be seen in figure 4(b). It is possible to include a
larger subset of the pixels on the circular patterns by
merely adjusting the parameters in (6). Such a larger
subset does however come at the cost of more noise

in the filtered image. Increased noise levels in turn
leads to difficulty in fitting an accurate circle to the
isolated pixels.

3.3 Thresholding

At this stage of the process the original B-scan image
is reduced to a predominantly dark image containing
a small set of lighter pixels that are located in the
vicinity of a circular pattern (see figure 4(b)). The
isolated pixels however still have differing grayscale
values, as is also evident in figure 4(b). In order to be
able to fit a circle to the observed circular pattern, it
is necessary to distinguish unambiguously between
the pixels that are definitely on the circular pattern
and those who aren’t. This choice can be made by
converting the grayscale image to a black and white
image by means of a thresholding function.

More specifically, if a pixel’s grayscale value is less
than 0.5 it is converted to zero (black). If however a
pixel’s grayscale value is 0.5 or greater, it is converted
to one (white). An example of the result of the
thresholding process is presented in figure 5.

The choice of the threshold grayscale value is
determined by the distribution of grayscale values in
the enhanced image. As an example, figure 6 shows
a histogram of the grayscale values in the enhanced
image in figure 4(b). Clearly, the vast majority of the
pixels in the image are in fact part of the background,
with only a very small number with grayscale values
exceeding 0.5. If the threshold is chosen too low,
spurious pixels are included in the dataset that is
to be used for the circle fitting algorithm. If the
threshold is chosen too high, some of the pixels which
should have been on the circle are omitted. Either
error will result in inaccurate circle fitting. Typically,
the threshold should be chosen to be somewhere at
the bottom of the valley in the histogram in figure 6.
A threshold value of 0.6 was used to obtain the results
in presented in this paper.

3.4 Circle fitting

Algorithms that fit circles to observed data point
can be divided in two main categories, namely:
geometric and algebraic algorithms [12]. Geometric
algorithms minize the geometric distance between
the model (fitted circle) and the data and are often
implemented by means of orthogonal least squares.
The geometric distance is in essence the difference
between the radius of the fitted circle and the
“true” radius of the circle which gave rise to the
observed data. Algebraic algorithms on the other
hand minimize the algebraic distance (which is the
difference between the squared radius of the fitted
circle and the squared radius of the true underlying
circle) between the observed data and the fitted circle.

Geometric algorithms are often regarded as being
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(a) Decluttered horizontal B-scan of a metal AT mine (b) Result of nonlinear amplitude filtering

Figure 4: Contrast enhancement by means on logistic filters

(a) Image after contrast enhancement (b) Binary image after thresholding

Figure 5: Isolation of circle pixels by means of thresholding

more accurate than algebraic algorithms, but are
also iterative and therefore more computationally
intensive. The relative inaccuracy of algebraic
algorithms should however be seen in the context
that the differences in the accuracy between algebraic
and geometric algorithms can only be revealed by
higher order error analysis [12]. The slight loss
in accuracy incurred by an algebraic circle fitting
algorithm is therefore handsomely compensated for
by its speed.

Obtaining a least-squares fit for a circle is a nonlinear
problem. In algebraic algorithms parameter substi-
tutions are used to convert this nonlinear problem
into a linear problem. Probably the fastest algebraic
circle fitting algorithm is the Kåsa algorithm [13].
Compared to other algebraic algorithms it does have
a bias towards small circles (i.e. the radius of the
fitted circles are consistently slightly too small). This
shortcoming is however irrelevant for the application

in mind, as we’ll see when the classification rule is
discussed in section 3.5.

Figure 7 shows the circle fitted on the data obtained
from the binary image in figure 5(b). The circle in
figure 7 is superimposed on the enhanced image of
figure 5(a) to show that the fitted circle is indeed an
accurate model for the observed circular pattern.

The acceptance of any mathematical model is
however subject to its validation. This principle also
holds true in this landmine detection algorithm, since
a lot depends on the accuracy of the fitted circle. The
next step of the mine detection algorithm is therefore
to ensure the quality of the fitted circle.

The quality of the fitted circle can be assessed by the
following three self-evident rules:

(a) The centre of the fitted circle must be within the
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Figure 6: Histogram of grayscale values in the enhanced
image

Figure 7: Circle fitted to a circular pattern

boundaries of the image.

(b) The diameter of the fitted circle must fit inside
the boundaries of the image.

(c) And most importantly, the fitted circle must be
a good description of the underlying pattern in
the data.

The last consideration is in essence the accuracy of
the fitted model and can be conveniently measured
with the so-called coefficient of determination [14].
This measure is often used in system identification
and can be interpreted as the “. . . fraction of the
raw variation in y accounted for using the fitted
equation.” [14]. Mathematically, the coefficient of
determination can be expressed as follows:

R2 =
∑i (yi − ȳ)2

−∑i (yi − ŷi)
2

∑i (yi − ȳ)2
, (8)

where yi refers to the ith measured datapoint (the row
number of a pixel), ȳ represents the average value
of the measured datapoints and ŷi signifies the value

of the fitted circle corresponding to the ith measured

datapoint.

If the R2-value of a fitted circle is less than a
prescribed value, the model is rejected. In that
case it can be concluded that there is no circular
pattern present in the data, which in turn leads to
the conclusion that no mine is present at least at the
depth of the current B-scan. The threshold against

which the R2-value of the fitted circle is compared
determines the stringency of the detection algorithm.
Low values for this threshold result in numerous
false alarms. If the threshold value for the fitted
circle’s quality is however too high, some mines
might escape detection. In the present version of the
algorithm only circles with an accuracy exceeding 95
percent were retained.

3.5 Classification rule

As mentioned in section 3.1, the reflections caused
by landmines have a number of characteristic
properties. In short, as the depth index increases a
number of concentric rings fan out from a common
centrepoint. This observation forms the basis of a rule
with which landmine detection can be performed. It
is important to note that the precise size of the fitted
circles is not as important as the reliable detection
and placement of the circles in the first place. Since
the rings are arranged in concentric patterns and the
Kåsa algorithm is biased towards smaller circles it
invariably works out in practice that the radius of
the fitted circle remains roughly constant as the depth
increases.

The following rule can therefore be used to detect
mines from a sequence of B-scans:

IF two or more circles occur in consecutive B-scans AND
IF their centrepoints remain approximately constant AND
IF their radii also remain approximately constant THEN a
landmine occurs at the horizontal position and depth of the
fitted circles.

From the above mentioned rule it is evident that one
advantage of this approach to mine detection is that
it is quite easy to pinpoint the position of the mine in
three dimensions.

4. RESULTS

The algorithms discussed in sections two and three
were implemented on the same dataset that was used
in the companion paper. Similar measures are also
used to assess the results as in the previous paper.

4.1 Clutter removal results

The clutter removal algorithm presented in this paper
only has a single adjustable parameter, namely the
number (N) of previous A-scans that are included in
the weighted average. It was found experimentally
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that the best balance between the quality of clutter
removal and computational cost is struck for N = 2.

Figure 8 shows a horizontal B-scan taken at a specific
depth both before and after clutter removal. Small
differences between the different antenna-elements
cause interference patterns in the raw data. The result
are the linear patterns present in figure 8(a) (where
they resemble car tracks). From figure 8(b) it is clear
that all antenna-related noise has been removed by
the clutter removal procedure of (4).

The quality of clutter removal algorithms can also be
measured more objectively by the average level of
cross-correlation present in the data after it has been
processed. Figure 9 shows the average degree of peak
cross-correlation for every 3 × 3 neighbourhood of
A-scans in the data. Figure 9(a) shows the average
degree of correlation of neighbouring A-scans after
application of a time-domain principal component
based clutter removal algorithm [15]. This figure
should be interpreted as a top-down view of an
area of ground which has been scanned with a
ground-penetrating radar. Areas showing high de-
grees of correlation may be indicative of interesting
subsurface objects or soil layers. Superimposed
on this figure are the positions of known mines
(indicated with black squares). Clearly, there is room
for improvement in the clutter removal algorithm
since large areas of ground are shown to have highly
correlated A-scans.

The average degree of cross-correlation was also
calculated for the new clutter removal algorithm
(figure 9(b)). Clearly, the new clutter removal
algorithm removes almost all of the background
reflections from the data with the result that the
A-scans are almost entirely decorrelated (with the
exception of the immediate vicinity of the two metal
AT mines).

Probably the most attractive feature of the improved
clutter removal algorithm is its speed. The
new algorithm requires 3.7 ms to process an
entire cross-track B-scan, which makes real-time
implementation possible. If the reader bears in mind
that all of the results presented in this paper were

obtained by means of Matlabr, one could easily
expect another twofold improvement if the algorithm
is implemented in C.

4.2 Adaptability of the background model

The new clutter removal algorithm can adapt to
changing soil conditions. This property is due to
the fact that the background clutter present in each
A-scan is modelled by the weighted average of
the previous A-scans in the down-track direction.
One could however wonder whether the model’s
coefficients are in fact adapted in response to the
changing soil conditions or whether the algorithm

merely gravitates to a fixed filter after a few rows of
A-scans.

In section 4.1 it is reported that only two prior
A-scans are necessary to obtain a useful weighted
average. The background clutter in any A-scan
can therefore be modelled as in (9). The model
in (9) is in effect a moving average low-pass filter
whose filter coefficients are adaptively calculated.
The bandwidth of a moving average low-pass filter
is inversely related to the window width. A
short window (as in the filter in (9)) therefore
corresponds to a low-pass filter with a large
bandwidth. Consequently, the decluttered A-scans
therefore only contain very high frequencies.

x̂ij = θ1x(i−1)j + θ2x(i−2)j. (9)

The distributions of the coefficients θ1 and θ2 in (9) are
given in the histograms presented in figure 10. These
histograms were obtained from the filter coefficients
calculated for each and every A-scan in the entire
available C-scan of data. Clearly, the values for both
coefficients are distributed continuously over quite
small ranges. Furthermore, the coefficients seem to
be normally distributed.

The distribution of the filter coefficients calculated
for each A-scan are given as a function of the
physical location of the corresponding A-scan in
figure 11(a) and (b). Although it seems that the
filter coefficients were chosen at random, a careful
study of both figures reveals that small regions of
similar coefficient values are present in the images.
This observation supports the conclusion that the
model in (9) does indeed adapt to changing local soil
conditions.

4.3 Landmine detection results

Although the rule-based classifier seems quite sim-
plistic compared to other classifiers, its performance
is nothing to be scoffed at. As figure 12 shows, the
rule-based classifier can correctly identify metal AT
mines as well as a plastic AT mine. In this figure,
the positions of known mines are indicated by cyan
squares, while red stars indicate the positions where
the algorithm thought there were mines.

Although this classifier can detect metal and
non-metal AT mines, its false alarm rate is in
need of attention, as can be clearly seen in figure
12. Furthermore, the rule-based algorithm couldn’t
detect plastic anti-personnel (AP) mines. An analysis
of the GPR data at the positions of the false alarms
show that there are indeed circular patterns present
at the locations of the false alarms. As figure
12 shows, false alarms frequently occur near the
known locations of meerkat tunnels as well as on
the boundary between the sandpit and normal soil.
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(a) Before clutter removal

(b) After clutter removal

Figure 8: Subjective evaluation of the quality of clutter removal

(a) Time domain principal component based filtering

b) New clutter removal algorithm

Figure 9: Comparison of the cross-correlation present in the data after clutter removal

Indeed, there are a number of subsoil objects with
GPR reflections quite similar to those of mines.

Another (more serious) problem is that the
rule-based algorithm couldn’t detect any AP mine.
The available GPR data is partly to blame for this
state of affairs. In this specific dataset the spacing
between consecutive cross-track B-scans is 10 cm. If
the small dimensions of e.g. an M-14 mine are taken
into consideration, it is no small wonder that the
presence such mines are well nigh invisible in the
GPR data

One advantage of the rule-based classifier is its

speed. On average it requires 417 µs to process
an entire cross-track B-scan. If this is added to the
3.7 ms per cross-track B-scan required by the clutter
removal algorithm, the entire duration is 4.1 ms.
This is almost neglegible compared to the 35.7 ms
required to obtain the GPR cross-track B-scan data in
the first place. If successive cross-track B-scans are
separated by a distance of 10 cm (as is the case with
the available data), the landmine detection (including
radar measurement) can be performed at a maximum
speed of 2.51 m/s or 9.04 km/h.
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Figure 10: Histograms of the values of θ1 and θ2 in (9)

(a) Values of θ1

b) Values of θ2

Figure 11: Filter coefficient values as a function of physical location

Figure 12: Detection results

5. CONCLUSION

Compared to the existing GPR literature, the
performance of the rule-based classifier of section 3 is
quite promising. In fact, one can state with a certain
degree of confidence that real time GPR detection of
plastic AT mines is feasible. The improved clutter
removal procedure described in section 2 not only

removes almost all of the background clutter, but also
in a time frame that allows real-time implementation.
However, the following two concerns remain:

1. The false alarm ratio which is still too high.
Improving the circle fitting algorithm will
probably address this issue satisfactorily.
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2. The inability of the classifier to detect plastic
AP mines. This deficiency is however to
be expected, since the particular mines are
practically invisible even in the decluttered data.
The resolution of the original raw GPR data can
be improved by sampling the ground at finer
intervals in the down-track direction. However,
in certain soil conditions the difference in the
permittivity of an AP mine and the surrounding
soil will still be insufficient to make the mine
visible in GPR data.
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